Группа Г13

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

Основные нормы взаимозаменяемости

РЕЗЬБА ТРУБНАЯ ЦИЛИНДРИЧЕСКАЯ

Basic norms of interchangeability.

Pipe cylindrical thread

Дата введения 1983-01-01

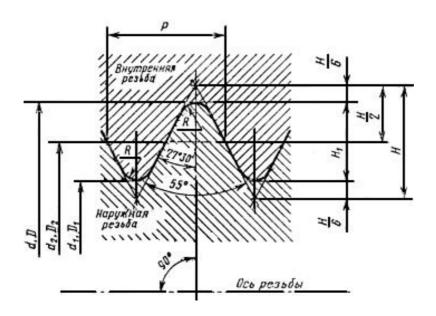
РАЗРАБОТАН Министерством станкостроительной и инструментальной промышленности ИСПОЛНИТЕЛИ

М.А.Палей, Г.С.Кудинова

ВНЕСЕН Министерством станкостроительной и инструментальной промышленности

Зам. министра А.Е.Прокопович

УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета СССР по стандартам от 30 декабря 1981 г. N 5790


B3AMEH ΓΟCT 6357-73

Настоящий стандарт распространяется на трубную цилиндрическую резьбу, применяемую в цилиндрических резьбовых соединениях, а также в соединениях внутренней цилиндрической резьбы с наружной конической резьбой по <u>ГОСТ 6211-81</u> и устанавливает профиль, основные размеры и допуски резьбы.

Стандарт полностью соответствует СТ СЭВ 1157-78.

1. ПРОФИЛЬ

1.1. Номинальный профиль резьбы и размеры его элементов должны соответствовать указанным на черт.1 и в табл.1.

- d наружный диаметр наружной резьбы (трубы);
- d_1 внутренний диаметр наружной резьбы;
- d_2 средний диаметр наружной резьбы;
- D наружный диаметр внутренней резьбы (муфты);
- D_1 внутренний диаметр внутренней резьбы;
- ${\it D}_2$ средний диаметр внутренней резьбы;
- Р шаг резьбы;
- ${\it H}\,$ высота исходного треугольника;
- H_1 рабочая высота профиля;
- R радиус закругления вершины и впадины резьбы

Черт.1

Таблица 1

Размеры в мм

Шаг <i>Р</i>	Число шагов <i>z</i> на длине 25,4 мм	H = 0,960491P	H ₁ = 0,640327 P	$\frac{H}{6}$ = 0,160082 P	R = 0,137329 P
0,907		0,871165	0,580777	0,145194	0,124557
1,337	19	1,284176	0,856117	0,214029	0,183609
1,814	14	1,742331	1,161553	0,290389	0,249115
2,309	11	2,217774	1,478515	0,369629	0,317093

Примечание. Числовые значения шагов определены из соотношения P = 25,4/z с округлением до 3-го знака после запятой и приняты в качестве исходных при расчете основных элементов профиля.

1.2. Вершины наружной резьбы, а также внутренней резьбы допускается выполнять с плоским срезом в тех случаях, когда исключена возможность ее соединения с наружной конической резьбой по <u>ГОСТ 6211-81</u>.

2. ОСНОВНЫЕ РАЗМЕРЫ

2.1. Обозначение размера резьбы, шаги и номинальные значения наружного, среднего и внутреннего диаметров резьбы должны соответствовать указанным на черт.1 и в табл.2.

При выборе размеров первый ряд следует предпочитать второму.

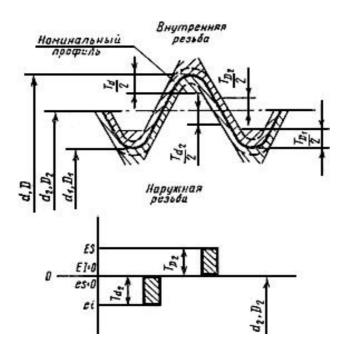
Таблица 2

Размеры в мм

Обозначени резь		Шаг <i>Р</i>	Ді	иаметры резь	бы
Ряд 1	Ряд 2		d = D	$d_2 = D_2$	$d_1 = D_1$
1/16		0,907	7,723	7,142	6,561
1/8			9,728	9,147	8,566
1/4		1,337	13,157	12,301	11,445
3/8			16,662	15,806	14,950
1/2			20,955	19,793	18,631
	5/8		22,911	21,749	20,587
3/4		1,814	26,441	25,279	24,117
	7/8		30,201	29,039	27,877
1			33,249	31,770	30,291
	11/2		37,897	36,418	34,939
11/4			41,910	40,431	38,952
	13/		44,323	42,844	41,365
1½			47,803	46,324	44,845
	ļ į		ļ į		ļ İ

	13/4		53,746	52,267	50,788
2			59,614	58,135	56,656
	2 1/4		65,710	64,231	62,752
2 ½			75,184	73,705	72,226
	23/4	2,309	81,534	80,055	78,576
3			87,884	86,405	84,926
	3 1/4		93,980	92,501	91,022
31/2			100,330	98,851	97,372
	33/4		106,680	105,201	103,722
4			113,030	111,551	110,072
	4 ½		125,730	124,251	122,772
5			138,430	136,951	135,472
	5½		151,130	149,651	148,172
6			163,830	162,351	160,872

^{2.2.} Числовые значения диаметров d_2 и d_1 вычисляют по следующим формулам


$$d_2 = D_2 = d - 0,640327 P (1)$$

$$d_1 = D_1 = d - 1,280654P \tag{2}$$

Числовые значения диаметра d установлены эмпирически.

3. ДОПУСКИ

3.1. Схемы полей допусков наружной и внутренней резьбы приведены на черт.2.

es - верхнее отклонение диаметров наружной резьбы;

ES - верхнее отклонение диаметров внутренней резьбы;

еі - нижнее отклонение диаметров наружной резьбы;

EI - нижнее отклонение диаметров внутренней резьбы;

$$\left. egin{align*} \mathbf{T}_{d_1}, \mathbf{T}_{d_2} \\ \mathbf{T}_{D_1}, \mathbf{T}_{D_2} \end{matrix}
ight.
ight.$$
 - допуски диаметров d , d_2 , D_1 , D_2

Черт.2

Отклонения отсчитывают от номинального профиля резьбы в направлении перпендикулярном оси резьбы.

3.2. Допуски среднего диаметра резьбы устанавливают двух классов точности - $\mathbb A$ и $\mathbb B$.

Допуски среднего диаметра резьбы являются суммарными.

Допуски диаметров d_1 и D не устанавливаются.

		На	ружная ре	езьба	Внутренняя резьба				
				Диаметр	ы резьбы	l			
Обозначение размера резьбы	Шаг <i>Р</i> , мм	d	d	2	L	D_1			
				Допус	ки, мкм				
		T_d	T,	d_2	T	D_2	T_{D_1}		
			Класс А	Класс В	Класс А	Класс В			
1/16	0,907	214	107	214	107	214	282		
1/8		214	107	214	107	214	282		
1/4	1,337	250	125	250	125	250	445		
3/8		250	125	250	125	250	445		
1/2			142	284	142	284	541		
5/8	1,814	284	142	284	142	284	541		
3/4		284	142	284	142	284	541		
7/8		284	142	284	142	284	541		
		360		360		360	640		

11/2	2,309	360	180	360	180	360	640
11/4		360	180	360	180	360	640
13%			180	360	180	360	
11/2		360	180	360	180	360	640
13/4		360	180	360	180	360	640
2		360	180	360	180	360	640
2 1/4					217	434	
2 ½	2,309	434	217	434	217	434	640
23/4		434	217	434	217	434	640
3		434		434	217		640
3 1/4		434	217	434	217	434	640
3 ½		434	217	434	217	434	640
33/4		434					
4		434	217	434	217	434	640
4 ½		434	217	434	217	434	640

5	434					640
5½	434	217	434	217	434	640
6	434	217	434	217	434	640

Примечание. Числовые значения допусков установлены эмпирически.

3.4. Длины свинчивания подразделяют на две группы: нормальные ${\it N}$ и длинные ${\it L}$.

Длины свинчивания, относящиеся к группам N и \mathcal{L} , приведены в табл.4.

Таблица 4

Размеры в мм

Обозначение размера резьбы	Шаг Р	Длина свин	нчивания
		N	L
1/16	0,907	Св. 4 до 12	Св. 12
	1,337	Св. 5 до 16	Св. 16
	1,814	Св. 7 до 22	Св. 22
11/2	2,309	Св. 10 до 30	Св. 30
11/4			
13/8			
11/2			
13/4			
2			
2 1/4	2,309	Св. 12 до 36	Св. 36
2 ½			

2 ³ ⁄ ₄			
3 1/4			
3 ½			
33/4			
4	2,309	Св. 13 до 40	Св. 40
4 ½			
5			
5 ½			

Примечание. Числовые значения длин свинчивания установлены эмпирически.

- 3.5. Допуск резьбы, если нет особых оговорок, относится к наибольшей нормальной длине свинчивания N, указанной в табл.4, или ко всей длине резьбы, если она меньше наибольшей нормальной длины свинчивания.
- 3.6. Допуски среднего диаметра внутренней резьбы по настоящему стандарту, предназначенной для соединения с наружной конической резьбой по $\underline{\mathsf{FOCT}}$ 6211-81 должны соответствовать классу точности $\mathbb A$.

При этом конструкция деталей с внутренней цилиндрической резьбой должна обеспечивать ввинчивание наружной конической резьбы на глубину не менее указанной в <u>ГОСТ 6211-81</u>.

3.7. Числовые значения предельных отклонений диаметров наружной и внутренней резьбы должны соответствовать указанным в табл.5.

			Н	Іаруж	кная рез	ьба		Внутренняя резьба						
						Диа	метр	ы ре	зьбы					
Обозначение размера резьбы	Шаг <i>Р</i> , мм	1	d		d_2 d			D		D_2		D_1	l	
			Предельные с						нения, м	ИКМ				
					е	i			Е	S				
		es	ei	es	Класс А	Класс В	es	EI	Класс А	Класс В	EI	ES	EI	
1/16	0,907		- 214		-107	-214			+107	+214		+282		
1/8		0	- 214	0	-107	-214	0	0	+107	+214	0	+282	0	
1/4	1,337		- 250		- 125	-250			+125	+250		+445		
3/8		0	- 250	0	-125	-250	0	0	+125	+250	0	+445	0	
1/2		0	- 284	0	-142	-284	0	0	+142	+284	0	+541	0	
5/8					-142									
3/4		0	- 284	0	-142	-284	0	0	+142	+284	0	+541	0	

7/8		0	- 284	0	-142	-284	0	0	+142	+284	0	+541	0
1			- 360		-180	-360	0	0	+180	+360	0	+640	0
11/8		0	- 360	0	-180	-360	0	0	+180	+360	0	+640	0
11/4		0	- 360	0	-180	-360	0	0	+180	+360	0	+640	0
13/8		0	- 360	0	-180	-360	0	0	+180	+360	0	+640	0
1½	2,309	0	- 360	0	-180	-360	0	0	+180	+360	0	+640	0
13/4		0	- 360	0	-180	-360	0	0	+180	+360	0	+640	0
2		0	- 360	0	-180	-360	0	0	+180	+360	0	+640	0
2 1/4		0	- 434	0	-217	-434	0	0	+217	+434	0	+640	0
2 ½		0	- 434	0	-217	-434	0	0	+217	+434	0	+640	0
23/4			- 434	0	-217	-434			+217	+434		+640	0
3		0	- 434	0	-217	-434	0	0	+217	+434	0	+640	0
3 1/4		0	- 434	0	-217	-434	0	0	+217	+434	0	+640	0

3 ½		0	- 434	0	-217	-434	0	0	+217	+434	0	+640	0
33/4		0	- 434	0	-217	-434	0	0	+217	+434	0	+640	0
4	2,309	0	- 434	0	-217	-434	0	0	+217	+434	0	+640	0
4 ½		0	- 434	0	-217	-434	0	0	+217	+434	0	+640	0
5		0	- 434	0	-217	-434	0	0	+217	+434	0	+640	0
5 ½		0	- 434	0	-217	-434	0	0	+217	+434	0	+640	0
6		0	- 434	0	-217	-434	0	0	+217	+434	0	+640	0

Примечание. Нижнее отклонение внутреннего диаметра d_1 и верхнее отклонение наружного диаметра D не устанавливаются.

3.8. Предельные отклонения среза вершин и впадин наружной и внутренней резьбы приведены в справочном приложении.

4. ОБОЗНАЧЕНИЯ РЕЗЬБЫ

4.1. В условное обозначение трубной цилиндрической резьбы должны входить:

буква G, обозначение размера резьбы и класс точности среднего диаметра. Условное обозначение для левой резьбы дополняется буквами LH.

Примеры условного обозначения резьбы:

класса точности $A: G1\frac{1}{2} - A$

левой резьбы класса точности $B: G \ 1\frac{1}{2}LH - B$

4.2. Длина свинчивания N в обозначении резьбы не указывается. Длина свинчивания L указывается в миллиметрах.

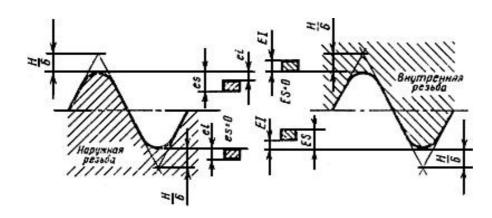
Пример:
$$G \, 1 \, \frac{1}{2} \, LH - B - 40$$
 \int Длина свинчивания

4.3. Посадка обозначается дробью, в числителе которой указывают обозначение класса точности внутренней резьбы, а в знаменателе - обозначение класса точности наружной резьбы.

Пример:
$$G1\frac{1}{2} - A/A$$

 $G1\frac{1}{2}LH - A/B$

4.4. Соединение внутренней трубной цилиндрической резьбы класса точности д по настоящему стандарту с наружной трубной конической резьбой по <u>ГОСТ</u>
<u>6211-81</u> обозначается следующим образом:


Пример:

$$\frac{G}{R}$$
1½ – А или G/R 1½ – А

ПРИЛОЖЕНИЕ (справочное). ПРЕДЕЛЬНЫЕ ОТКЛОНЕНИЯ СРЕЗА ВЕРШИН И ВПАДИН РЕЗЬБЫ

ПРИЛОЖЕНИЕ Справочное

- 1. Настоящее приложение содержит информацию о предельных отклонениях разреза размера $\frac{H}{6}$ вершин и впадин наружной и внутренней резьбы, которые являются исходными при проектировании резьбообразующего инструмента и не подлежат обязательному контролю, если это не установлено особо.
- 2. Предельные отклонения размера $\frac{H}{6}$ приведены на чертеже и в таблице.

- es верхнее отклонение среза вершины и впадины наружной резьбы;
- ES верхнее отклонение среза вершины и впадины внутренней резьбы;
- еі нижнее отклонение среза вершины и впадины наружной резьбы;
- EI нижнее отклонение среза вершины и впадины внутренней резьбы

Черт.3

Текст документа сверен по: официальное издание М.: Издательство стандартов, 1982